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Abstract

The Segment Anything Model (SAM) is a powerful founda-
tion model for image segmentation, showing robust zero-shot
generalization through prompt engineering. However, rely-
ing on manual prompts is impractical for real-world applica-
tions, particularly in scenarios where rapid prompt provision
and resource efficiency are crucial. In this paper, we propose
the Automation of Prompts for SAM (AoP-SAM), a novel
approach that learns to generate essential prompts in opti-
mal locations automatically. AoP-SAM enhances SAM’s ef-
ficiency and usability by eliminating manual input, making
it better suited for real-world tasks. Our approach employs
a lightweight yet efficient Prompt Predictor model that de-
tects key entities across images and identifies the optimal re-
gions for placing prompt candidates. This method leverages
SAM’s image embeddings, preserving its zero-shot general-
ization capabilities without requiring fine-tuning. Addition-
ally, we introduce a test-time instance-level Adaptive Sam-
pling and Filtering mechanism that generates prompts in a
coarse-to-fine manner. This notably enhances both prompt
and mask generation efficiency by reducing computational
overhead and minimizing redundant mask refinements. Eval-
uations of three datasets demonstrate that AoP-SAM substan-
tially improves both prompt generation efficiency and mask
generation accuracy, making SAM more effective for auto-
mated segmentation tasks.

Introduction

Image segmentation, a critical task in CV, underpins appli-
cations ranging from autonomous vehicle navigation (Feng
et al. 2020) to medical diagnostics (Hesamian et al. 2019)
and robotics perception (Hurtado and Valada 2022). Seg-
ment Anything Model (SAM) is a foundation model de-
signed to tackle general image segmentation and has been
trained on a vast dataset with billions of mask annota-
tions (Kirillov et al. 2023). SAM excels at segmenting a
wide range of visual elements across diverse environments,
enabling it to solve various downstream segmentation prob-
lems through prompt engineering. These prompts, which in-
clude points or bounding boxes, allow SAM to achieve zero-
shot generalization (Kirillov et al. 2023), making it adapt-
able to numerous applications.
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The manual provision of prompts required for segmenting
entire images in SAM is highly labor-intensive and time-
consuming, making it impractical for applications that de-
mand rapid prompt generation in hardware-constrained sce-
narios, such as industrial automation. Consequently, auto-
matic prompt generation is essential for these use cases.
However, as shown in Figure 1, current approaches to au-
tomating prompts for generalized tasks face significant lim-
itations due to two key issues: 1) Unintelligent automa-
tion, the vanilla SAM employs a grid-based search of point
prompts, named Automatic Mask Generation (AMG) (Kir-
illov et al. 2023), for producing prompts. If the grid search
is too sparse, it risks missing numerous small objects or im-
portant details. Conversely, if the search is too dense, it pro-
duces an excessive number of redundant masks, necessitat-
ing significant refinement and ultimately slowing down the
overall processing time. 2) Time and Resource Inefficiency,
automating prompts with bounding boxes in SAM enables
the use of existing deep-learning models to generate bound-
ing boxes from images, offering an alternative for prompt
generation. For instance, the Object-Aware Sampling (OAS)
method from (Zhang et al. 2023c) utilizes YOLOv8 (Wang
et al. 2023a), a state-of-the-art architecture known for effi-
cient detection with bounding boxes, to automate the prompt
production process. However, this approach is not directly
aligned with SAM and introduces substantial computational
overhead, posing challenges in resource-limited scenarios.
These constraints significantly diminish the applicability
and effectiveness of foundational segmentation models like
SAM, particularly in automated annotation tasks and situa-
tions where rapid prompt generation is crucial.

In this work, we propose a novel approach, AoP-SAM, for
the Automation of Prompts within the SAM family of mod-
els, e.g. (Kirillov et al. 2023; Zhang et al. 2023a,c). This
method enables the efficient generation of essential point
prompts for accurate segmentation without the need for hu-
man intervention. We first designed a learnable prompt pre-
dictor specifically for SAM. Unlike independent deep learn-
ing modules that rely solely on image input to generate
bounding boxes as prompt inputs, our predictor is tightly
integrated with SAM. It takes both the image input and
the computed image embedding—i.e., the input and out-
put of SAM’s image encoder—leveraging this information
to learn and generate a prompt confidence map. This map
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Figure 1: In SAM, automating prompt provision eliminates the need for manual input, significantly improving the efficiency of
mask segmentation. However, current approaches, such as grid-based prompts in vanilla SAM (AMG_S for sparse, AMG_D for
dense) or extra detection models (OAS: Box or Central Point), often introduce excessive mask refinements or computational
overhead, leading to increased latency and reduced efficiency. In contrast, our proposed AoP-SAM efficiently generates essential
prompts for accurate mask generation within SAM, entirely without human intervention. In the illustrations above, different
colors represent various segmentation results, with orange labels (stars or boxes) indicating valid prompts, green labels marking

invalid prompts, and black stars in our results representing the filtered prompts, processed in a coarse-to-fine manner by the

test-time instance-wise Adaptive Sampling and Filtering (ASF) mechanism.

predicts the locations of essential prompts that can be used
for accurate segmentation within SAM. Second, to reduce
the number of redundant mask generations, we propose an
Adaptive Sampling and Filtering (ASF) technique that op-
erates in a coarse-to-fine manner. Initially, we sample point
prompts coarsely from the Prompt Confidence Map to be-
gin mask generation. Then, we leverage the generated mask
to filter out any remaining prompts that would produce the
same mask, thereby enhancing overall efficiency. Therefore,
AoP-SAM can effectively and efficiently produce prompts
for segmentation tasks without compromising the accuracy
and flexibility of the original SAM.

Our contributions are as follows:

* To eliminate the need for manual provision of prompts
tailored to each general image, our AoP-SAM approach
automatically predicts and generates prompts effectively
and efficiently.

* We introduce a simple yet efficient prompt prediction
method that utilizes SAM’s computed data to pinpoint
potential prompt locations. Additionally, ASF ensures
that only the most essential prompts are utilized in a
coarse-to-fine selection process, thereby enhancing over-
all segmentation efficiency.

» Extensive experiments on three benchmarks have shown
the effectiveness of our proposed AoP-SAM.

Related Work

Prompting Technique in Zero-shot Foundation
Models

Foundation models initially emerged in NLP, with large
language models like the GPT series demonstrating strong
zero-shot generalization to unseen tasks and data. Prompt-
based learning methods were then introduced, enabling
these models to generalize to downstream tasks by inter-
preting prompts as task instructions rather than requiring
parameter fine-tuning. The leading hypothesis regarding the
effectiveness of prompts suggests that models interpret these
prompts as specific task instructions, enabling them to gen-
eralize to tasks not encountered during training (Sanh et al.
2021). This approach, inspired by human-like adaptabil-
ity, quickly gained popularity in NLP (Brown et al. 2020).
These advancements influenced CV, where prompt engineer-
ing with frozen pre-trained models led to SAM, excelling in
zero-shot learning and precise object segmentation based on
spatial prompts.

Methods for Automating Prompts

While SAM allows manual prompts for mask generation
(e.g., clicking or dragging on an image), this approach is
impractical for real-world applications. The manual provi-
sions of prompts required by SAM are highly labor-intensive



and time-consuming. Moreover, the segmentation perfor-
mance is heavily dependent on the prompt quality. Craft-
ing precise prompting needs expert domain-specific knowl-
edge, which is not available for all circumstances. To ad-
dress this, SAM introduces an Automatic Mask Genera-
tion (AMG) mode, which autonomously positions numer-
ous prompts in a grid-search manner and generates masks
without continuous human input (Kirillov et al. 2023). How-
ever, sparse grids may miss small objects, while dense grids
(e.g., 32 x 32 points) result in redundant prompts for large
objects, requiring post-filtering. A special version of SAM
trained for fully automatic mask generation created the ex-
tensive SA-1B dataset (Kirillov et al. 2023) (11 million im-
ages, over 1 billion masks) but sacrifices inference speed,
further increasing latency.

There is another direction currently by using mod-
ern object detection models to generate object-aware
prompts (Zhang et al. 2023c) adopts YOLOVS, which is
a SOTA architecture for efficient detection with bounding
boxes. With the generated box, people can either use its
center as an object-aware point prompt or directly adopt
the box itself as the prompt. However, this method brings
heavy computational overhead due to the size of the ob-
ject detection models, as they are not specialized for gen-
erating prompts. In contrast, our proposed approach is ded-
icated to predicting prompts and integrated ASF to further
improve efficiency by relieving potential redundant genera-
tion through a sample-level test-time adaptation.

Test-time Adaptation

Test-time domain adaptation aims to improve model per-
formance on test data that differs from the training data
due to a domain gap (Wang et al. 2020; Hu et al. 2020).
This adaptation is categorized into two main approaches:
backward-based and backward-free. Backward-based adap-
tation utilizes self-supervised learning, often through en-
tropy minimization, to learn the characteristics of the tar-
get domain (Wang et al. 2020; Hu et al. 2019). In con-
trast, backward-free adaptation relies on batch normalization
statistic adjustments, as demonstrated by DUA’s running av-
erage technique (Mirza et al. 2022) and DIGA’s distribution
adaptation for semantic segmentation (Wang et al. 2023b).
Previous research has also explored test-time domain adap-
tation for camouflage object segmentation in SAM using a
general task description (Hu et al. 2024). Similarly, in our
work, we implement instance-level test-time domain adap-
tation, focusing on adaptively removing redundant prompt
candidates. This method enhances mask generation effi-
ciency across diverse datasets without requiring sample-
level supervision.

Method

We propose AoP-SAM to efficiently produce essential
prompts for accurate mask generations in SAM. In this sec-
tion, we first briefly review the architecture of SAM to show
how our proposed Prompt Predictor collaborates with SAM.
Then we introduce our Prompt Predictor, which identifies
essential prompt locations that contribute to segmentation

performance and further derives a prompt confidence map to
guide prompt generation. We also describe the training and
inference process of the Prompt Predictor. which is both data
and computationally efficient. Lastly, we present the ASF
technique to sample and filter prompts during the test-time
adaptation.

Preliminaries: SAM

SAM is an advanced image segmentation framework com-
posed of three key components: an Image Encoder, a Prompt
Encoder, and a Mask Decoder. These modules collaborate to
process images and generate segmentation masks. (1) Image
encoder: SAM begins with a robust yet computationally in-
tensive module that extracts essential features from the in-
put image, producing a 64x64 spatial resolution embedding
as a compact representation of critical image characteristics.
(2) Prompt encoder: The Prompt Encoder processes interac-
tive inputs like points, boxes, or masks, converting them into
embeddings that guide the Mask Decoder. This enhances
accuracy and supports SAM’s remarkable zero-shot gener-
alization. (3) Mask decoder: In the final stage, a two-layer
transformer-based module that combines image and prompt
embeddings to generate precise segmentation masks, effec-
tively delineating objects or regions of interest. SAM op-
timizes efficiency by embedding image and prompt inputs
only once.

SAM’s zero-shot generalization is underpinned by the
SA-1B dataset, containing over 1 billion masks and 11
million images—400 times larger than prior segmentation
datasets. This extensive dataset allows SAM to segment new
images without additional training. However, training SAM
is resource-intensive: for instance, training the ViT-H-based
SAM model on SA-1B for two epochs requires 256 GPUs
and a batch size of 256 images (Kirillov et al. 2023), em-
phasizing the significant resources dedicated to the image
encoder. This high computational cost motivates the reuse of
the image encoder’s outputs in later computations to maxi-
mize efficiency. For more details, see (Kirillov et al. 2023).

Prompt Predictor for Prompt Confidence Map

To enhance the automation of prompt production, we ad-
dress two main challenges: the detection of essential enti-
ties within full images and the efficient identification of po-
tential prompt locations. We propose a lightweight Prompt
Predictor that integrates processed data from the Segment
Anything Model (SAM), reducing computational complex-
ity while maintaining tight coupling with SAM, which im-
proves system efficiency. As illustrated in Figure 2, the im-
age segmentation process begins with the computation of
image embeddings. Whenever new prompts are provided,
corresponding masks can be generated, meaning that prompt
embeddings are computed and then injected into the mask
decoder to produce these masks. Following recent method-
ologies, we initiate prompt generation after the image em-
bedding is completed. This approach allows our Prompt Pre-
dictor to reuse pre-processed image inputs and their cor-
responding embeddings to generate a Prompt Confidence
Map. This map identifies regions of high confidence, which
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Figure 2: The architecture of our proposed AoP-SAM consists of two key components: the prompt predictor and the Adaptive
Sampler and Filter (ASF) Module. The prompt predictor operates by taking the image input and the computed image embed-
ding from SAM’s image encoder as inputs. Prompt predictor then generates a Prompt Confidence Map (PCM) that highlights
potential regions for prompt candidates. During test-time, these candidates are adaptively sampled and filtered by ASF, predict-
ing prompts that might lead to redundant masks based on the generated mask references. This process eliminates unnecessary
prompts, ensuring that only the essential ones are used to generate the final mask results.

can then be selected as prompts and used for segmentation
within the SAM framework.

Prompt Predictor Architecture. The model employs
two distinct CNN-based encoders: one for processing the
original image and the other for handling the ViT embed-
ding. The image encoder captures spatial features through
three convolutional layers, each followed by ReLU acti-
vations to enhance feature extraction and introduce non-
linearity. For the ViT embedding, the process begins by re-
shaping it to match the spatial dimensions of the image in-
put, ensuring seamless integration with the image data dur-
ing decoding. After reshaping, the ViT embedding is passed
through its own encoder, transforming it into a 32-channel
feature map. This alignment of the ViT embedding with the
image’s feature space allows the model to effectively fuse
and decode information from both inputs, leveraging their
strengths for more accurate and robust outcomes.

Following the encoding process, the Prompt Predictor
concatenates the outputs from both the image encoder and
the ViT embedding encoder along the channel dimension.
This operation merges the feature maps, creating a fused rep-
resentation that integrates both spatial and contextual infor-
mation from the original image and the ViT embedding. The
fused feature map is then processed through a series of con-
volutional layers in the Prompt decoder. These layers pro-
gressively reduce the dimensionality of the combined fea-
tures, refining the representation and distilling it into a more
compact form that retains the most relevant information. The
decoding process culminates in a Sigmoid-activated layer,
producing the final output as a Prompt Confidence Map.
This map effectively highlights regions of interest, from
which prompts can be sampled. The Sigmoid function nor-
malizes the output to a range between O and 1, making it

well-suited for generating probability maps that allow for
the flexible selection of high-confidence regions, ensuring
the prompts generated are both relevant and useful for mask
segmentation within the SAM framework.

The Prompt Predictor is designed with efficiency in mind,
maintaining a small memory footprint and low computa-
tional burden. The use of lightweight CNN-based encoders
for both the original image and the ViT embedding ensures
efficient feature extraction without the need for overly com-
plex architectures. Each encoder consists of a limited num-
ber of convolutional layers, reducing computational load
while capturing essential features. By reshaping the ViT
embedding to match the image dimensions and aligning it
within the same feature space, the model streamlines the
process, avoiding unnecessary intermediate computations.
The final step of concatenating outputs along the channel di-
mension, followed by a compact decoder, further minimizes
resource usage. The decoder efficiently refines the fused fea-
ture map and produces the final Prompt Confidence Map
through a single Sigmoid layer, which is computationally
inexpensive. This efficient design allows the Prompt Predic-
tor to deliver high performance while keeping memory us-
age and computational demands to a minimum, making it an
ideal solution for automating prompt generation in a manner
that is both resource-efficient and fast.

Training of Prompt Predictor Unlike traditional ob-
ject detection models that typically train on datasets like
COCO (Lin et al. 2014), our approach to training AoP-
SAM is both data-efficient and closely aligned with SAM
by leveraging the SA-1B dataset (Kirillov et al. 2023). The
SA-1B dataset, containing over 1 billion masks and their
corresponding prompts, was specifically chosen to ensure
that AoP-SAM inherits the robustness and generalizability



of SAM. By training on the same dataset, we align AoP-
SAM with SAM’s capabilities, particularly in handling di-
verse and unseen data. Given that point-type prompts align
most effectively with the Prompt Confidence Map, which
can be generated by our Prompt Predictor, we use these point
prompts from the SA-1B dataset as ground truth to train
our model. To ensure a diverse and challenging training set,
we carefully curated a selection of samples from the SA-1B
dataset, encompassing a broad range of semantic classes and
complex scenarios. This careful curation is crucial for main-
taining the model’s ability to generalize effectively across
various object scales and complexities.

During training, the learnable parameters include the Im-
age Encoder, ViT Encoder, and Prompt Decoder. To gen-
erate the Prompt Location Map Ground Truth, we place
point prompts within a blank map that matches the dimen-
sions of the pre-processed image sample. Since the initial
ground truth map is too sparse for effective training, we re-
fine it using a combination of uniform and Gaussian ker-
nels. This refinement enhances the precision of prompt lo-
cations, making the training feasible and significantly im-
proving the prompt generation process. The training process
involved iterative refinement of the model’s parameters us-
ing a MSELoss function, with optimization carried out via
the Adam optimizer. We employed a learning rate of and
trained the model for 1000 epochs, using gradient accumu-
lation to handle larger batch sizes effectively.

ASF for Essential Prompts

To effectively sample prompt candidates from the Prompt
Confidence Map, a Gaussian filter is first applied to smooth
the confidence map, enhancing key regions while reducing
noise. Following this, local maxima within the smoothed
confidence map are identified by isolating critical points of
interest, taking into account both a minimum distance be-
tween peaks and an absolute threshold. These local maxima
represent potential prompt candidates. The identified points,
initially located within the resized output dimensions, are
then mapped back to the original image coordinates by scal-
ing them according to the ratio between the resized output
and the original image size. This mapping results in a set
of coordinates that accurately reflect the positions of signif-
icant features within the original input space, making them
suitable as prompt candidates.

Even though sampling the candidates from the Prompt
Confidence Map can make a good selection for Automating
Prompts, however, it is still possible to make some redundant
prompts in some cases, therefore, we adapt a further fine fil-
tering to remove redundant candidates. In the processes of
mask generation in SAM, due to memory constraints, the
prompt can be divided into several batches and processed
iteratively, therefore, we can take advantage of computated
masks as references to predict which prompts remained in
the prompt candidates will be redundant and result in the
same mask with them, so we need to figure out the spatial lo-
cation and semantic meaning of these generated masks first
and then obtain the Prompt Elimination Map (Zhang et al.
2023e) of the processed prompts.

We utilize the image feature map result from the

vit_embedding and also reference masks during mask gen-
eration, where the image feature map containing the origi-
nal image input information and mask data containing the
information of location are generated, we denote image fea-
ture map as Frey € R"*¢ and each of these n masks as
Mo € R"™Y with h, w denoting the dimension of the image
feature map, c as the feature dimension and rn is the number
of predicted masks.

The n down-sampled reference masks M¢ are used to
extract the mask feature Mg, from the image feature map
one by one and we can get a set of n mask features. Each
mask feature then adopts an average pooling to aggregate
its global visual embedding. After this, we can obtain a
Prompt Elimination Map with confidence C for each refer-
ence mask by doing a cosine similarity between pixel-wisely
L2-normalized mask and image feature Mporm and Fporm as

{Ci}:‘lzl = {Fnorm X Mrilorm}?:l s Noorm € Rnxhxw (1)

On top of this, we adopt another average pooling to ag-
gregate all n local maps to obtain the overall Prompt Elimi-
nation Map of the generated mask as

1 n
C:;ZQ,CER”XW )
i=1

By incorporating the Prompt Elimination Maps of every
high-quality mask, the Elimination Map can take the vi-
sual appearance of different objects from existing masks into
consideration, and acquire a relatively comprehensive loca-
tion estimation. Each pixel on the upsampled Elimination
Map has a Elimination Score that indicates the likelihood of
that pixel is in the same spatial location and having the same
semantic meaning as generated masks in the original image,
The higher the Elimination Score of each pixel is in the map,
the more likely prompting at that pixel will resulting in the
duplicated masks with the existing masks.

After getting the Elimination Map generated from all ex-
isting masks, we can then obtain the elimination threshold
Telim by calculating the Elimination Score of current pro-
cessing prompts along with the confidence Intersection over
Union (IoU) scores of their resulting masks, as follows:

12 ; .
Tetim = — ) ToU' x C' 3)
iz

By multiplying the IoU score of the masks generated by
prompts with the Elimination Scores of current processing
prompts, the threshold biases more with prompts which can
generate the higher-quality masks.

The remaining prompts in the pool will obtain their cor-
responding Elimination Scores, which are compared to the
threshold. If a prompt’s score exceeds the threshold, it is
considered redundant and would generate duplicate masks
if further processed; therefore, it should be eliminated from
the prompt pool. By doing this way, redundant prompts will
be eliminated and only essential prompts will be kept in the
prompt pool and used to generate masks in the following
iterations.



Image Encoders ‘ Auto Prompts Methods ‘ SA-1B ‘ €oco ‘ LVIS
| | mloUT Infiy | Peakyem ! #P | mloUT Infiy | Peakyem. | #P | mloUT Infi, | Peakyem |  #P
AMG_S 29.8 - 45 38.6 56.0 - 1.9 335 56.2 - 1.9 334
AMG.D 46.9 - 9.1 71.0 60.9 - 1.9 55.9 61.1 - 1.9 55.5
MobileSAM OAS(Box) 50.7 0.191 7.3 100 55.5 0.187 42 44 55.7 0.188 4.0 38
OAS(Central Point) 48.7 0.188 7.7 141.0 53.9 0.167 4.3 69.0 54.5 0.164 43 68.1
AoP-SAM 51.4 0.101 4.1 71.7 61.5 0.096 2.1 58.1 62.3 0.094 2.1 57.5
AMG_S 40.0 - 5.7 55.5 61.4 - 4.4 48.8 63.2 - 4.3 49.5
AMG_D 65.6 - 10.3 108.9 67.7 - 4.3 86.0 69.2 - 4.3 86.5
ViT_L OAS(Box) 65.8 0.150 9.1 100 63.3 0.152 5.4 44 62.9 0.151 53 38
OAS(Central Point) 67.6 0.149 9.7 199.3 64.2 0.133 55 98.4 63.5 0.132 5.5 98.9
AoP-SAM 71.1 0.120 54 118.3 68.4 0.116 4.4 97.0 69.8 0.117 44 97.2
AMG_S 40.8 - 7.1 56.3 63.3 - 5.7 49.8 64.9 - 5.6 50.5
AMG_D 66.8 - 11.8 109.6 69.5 - 5.7 87.4 71.0 - 5.6 88.0
ViT_H OAS(Box) 66.9 0.160 10.4 100 64.1 0.152 6.8 44 63.3 0.153 6.6 38
OAS(Central Point) 68.3 0.154 11.1 207.6 65.1 0.134 6.9 102.1 63.0 0.134 6.8 102.4
AoP-SAM 70.6 0.122 6.6 107.8 70.1 0.120 5.5 90.0 71.9 0.122 5.5 89.7

Table 1: Results on Image Segmentation with bounding box supervision and point supervision. Best are in bold.

Method’s variant SA-1B COCO LVIS
Prompt Predictor ~ Adaptive Sampling ~ Adaptive Filtering mlIoU 1 Infi, | Peakyem | — #P mloU7  Infry | Peakvem 4 #P mloU?T Infi, | Peakyem |  #P
v 572 0.059 7.2 1064 679 0.078 5.7 70.4 60.9 0.075 5.7 60.6
v v 72.8 0.130 10.1 120.1 70.5 0.122 57 979 717 0.121 5.7 97.5
v v v 71.3 0.122 6.6 107.8 70.1 0.112 57 91.1 71.9 0.122 5.7 89.7

Table 2: Ablation study of variants with our AoP-SAM on image segmentation.

Experiments

To evaluate AoP-SAM across various scenarios, we selected
three different image encoders and implemented five au-
tomating prompts methods. This approach allows us to com-
prehensively assess both the accuracy and efficiency of our
method under different conditions.

Setup

Datasets. Generalized image segmentation focuses on seg-
menting every meaningful entity in an image. In this study,
we use three key datasets: SA-1B, COCO, and LVIS. The
SA-1B dataset, used for training SAM, contains over 1 mil-
lion images and 1 billion masks (Kirillov et al. 2023). The
COCO dataset includes 41,000 images and 200,000 masks,
covering a wide range of common objects (Lin et al. 2014).
LVIS, designed for long-tail distributions, provides 5,000
images and 25,000 masks, emphasizing fine-grained cate-
gories (Gupta, Dollar, and Girshick 2019). These datasets
allow us to thoroughly evaluate the effectiveness of our Au-
tomating Prompts method across diverse and challenging
scenarios.

Baseline. In our comparison of current methods for Au-
tomating Prompts in SAM, we introduce and evaluate two
types of prompts: bounding box prompts and point prompts.
The methods AMG_S and AMG_D represent the vanilla grid
search with 16 x 16 and 32 x 32 prompts, respectively, as
utilized in SAM (Kirillov et al. 2023). We also examine
the Object-Aware Sampling (OAS) method, which employs
YOLOVS to generate bounding box prompts (Zhang et al.
2023c). Furthermore, we implement an additional method
that uses the central point of the bounding box generated by
OAS as point prompts. Note that AoP-SAM is trained on

a subset dataset of SA_1B and tested on a separate test set,
similarly all the comparative methods we employ are also
trained and tested on different sets.

Evaluating SAM’s accuracy is challenging as it generates
masks without predefined labels, making traditional metrics
like mIoU (Shotton et al. 2006; Han et al. 2023), mAP (Lin
et al. 2014; Henderson and Ferrari 2017), and PQ(Kirillov
et al. 2019) unsuitable (Zhang et al. 2023d). To address this,
we use the greedy IoU algorithm (Zhang et al. 2023d), which
matches each SAM mask with the closest ground truth mask
based on IoU and calculates the mean IoU (mloU) for all
matches. In addition to evaluating accuracy performance,
we also assess the efficiency of Methods of Automating
Prompts in time- or resource-constrained environments us-
ing Inference Latency (Infy 4 )(s) for producing prompts and
peak memory (Peakyiem )(GB) consumption during mask
generation as key metrics. Additionally, we count the num-
ber of essential prompts (#P) as a reference point for com-
paring methods. It is important to note that a higher value
of mloU, or lower values of Inf . and Peakyenm., indicate
higher efficiency. Although there is no clear preference for
the number of essential prompts, intuitively, a smaller num-
ber of prompts yielding high accuracy performance is con-
sidered advantageous.

Implementation Details. Following the previous prompt-
ing settings (Kirillov et al. 2023), we enable the option for
generating multiple mask outputs from a single prompt for
point prompts, while disabling it for box prompts (Zhang
et al. 2023c). No background prompts are provided in ei-
ther case. We also implemented quality checks for all meth-
ods, removing low-quality masks (e.g., those with low con-
fidence or stability scores) during performance evaluation.

For coarsely sampling point prompts from the Prompt



(a) Sampling Smoothing Factor (b) Confidence Intensity Threshold

(c) Prompt Spacing Factor (d) Prompt Elimination Threshold

Factor | mloU 1 | Infry | | Peakyem. 4 Thr. | mloU? | Infry | | Peakyiem. |  Factor | mloU 1 | Infry | | Peakyem. 4  Thr. | mloU? | Maskpy. | | Ratiogim, T

1 724 0.124 51.5 0.1 70.9 ‘ 0.121 10.1
2 70.4 0.122 422 0.2 70.4 0.122 9.75
3 67.3 0.118 32.7 0.3 68.7 0.116 9.52
4 63.4 0.122 24.6 0.4 66.4 0.117 9.60

72.7 0.123 10.0 1.25 68.4 0.671 51.5
71.6 0.123 9.88 1.3 70.4 0.799 423
70.4 0.122 9.75 1.35 71.6 0.93 32.7
68.9 0.117 9.82 1.4 72.2 1.04 24.6

Table 3: Ablation study on Hyper-parameters employed in AoP-SAM. Best are in bold

Confidence Map, we first apply a Smoothing Factor=2, a
Confidence Intensity Threshold=0.2, and a Prompt Spacing
Factor=2 as initialized parameters. In each iteration, the out-
put mask from the previous iteration serves as a reference to
generate a Prompt Elimination Map via the ASF, adaptively
filtering out selected prompt candidates during test-time to
prevent redundant mask generation in future iterations. The
experiments are conducted using the PyTorch framework on
a single Nvidia Titan RTX GPU.

Experiment Results and Analysis

Experiment Results. Table 1 compares the performance of
various Automating Prompt methods across different image
encoders and evaluated on three datasets. Across all datasets
and image encoders, AoP-SAM consistently achieves the
highest mIoU scores, even though bounding box methods in-
herently benefit from more spatial information. This under-
scores the effectiveness of AoP-SAM in leveraging prompts
for accurate segmentation, surpassing both traditional meth-
ods and those that rely on advanced object detection mod-
els. The AoP-SAM method not only improves accuracy but
also demonstrates competitive latency and memory usage.
For example, on the SA-1B dataset with the ViT_H encoder,
AoP-SAM achieves a latency of 0.122s and peak mem-
ory usage of 6.6GB, which are within acceptable ranges
while delivering superior segmentation performance. Over-
all, the OAS methods (using either box or central point
prompts) generally perform better than the baseline AMG_S
and AMG_D methods but fall short of AoP-SAM. This in-
dicates that while object-aware sampling improves prompt
effectiveness, the adaptive sampling and filtering techniques
employed in AoP-SAM further enhance the accuracy of seg-
mentation and efficiency of Automating Prompts.
Component Analysis. We further analyze the impact of
components including the Prompt Predictor, Adaptive Sam-
pling, and Adaptive Filtering in Table 2 on the same datasets.
When Adaptive Sampling is enabled, there is a notable im-
provement in mloU compared to using only the Prompt
Predictor. However, the best performance is observed when
both Adaptive Sampling and Adaptive Filtering are used to-
gether, highlighting the importance of filtering redundant
prompts to enhance segmentation accuracy. The study shows
that while the full AoP-SAM configuration achieves the
highest mloU, it slightly increases latency and memory us-
age, a key trade-off for speed-sensitive applications.
Sampling Smoothing Factor. In Table 3a, we apply
Gaussian filtering to the heatmap using the Sampling
Smoothing Factor. A larger Sampling Smoothing Factor al-
lows the model to cover a broader area, providing more sub-
stantial smoothing, which is useful for reducing memory ac-

cess during preparation and processing.

Latency (Sec) | |Latency (Sec) | |Latency (Sec) | |Peak Mem |,
Prompt Methods| ™ ¢ |5, (COCO) (LVIS) (GB)
OAS(Box) 1.16 1.01 0.99 0.78
OAS(Central) 1.32 1.21 1.23 0.78
AoP-SAM 0.65 0.77 0.84 0.042

Table 4: Experimental results with MobileSAM for prompt
automation efficiency on an Nvidia Jetson Orin Nano Edge
GPU.

From heatmap to point prompt. In Table 3b-3c, we ex-
plore various parameter settings to transform the confidence
map into optimized point prompts. By adjusting the Confi-
dence Intensity Threshold and Prompt Spacing Factor, we
aim to identify the optimal points that most accurately rep-
resent the critical areas in the confidence map. These ad-
justments help refine the sensitivity of the point selection
process, ensuring that the resulting point prompts are both
precise and reliable.

Prompt Elimination Threshold. We evaluate the impact
of the Prompt Elimination Threshold on the prompt removal
ratio in Table 3d. As the Prompt Elimination Threshold de-
creases, the prompt removal ratio increases, resulting in a
speed-up effect of the mask generation while may slightly
affect accuracy.

Edge Device. We conducted the prompt automation ex-
periment on an Nvidia Jetson Orin Nano Edge GPU, ob-
taining the results in Table 4. Due to hardware limitations,
only MobileSAM (Zhang et al. 2023b) could run, as other
pre-trained models exhausted the edge GPU memory. We
focused on evaluating the efficiency of prompt automation,
with accuracy expected to align with standard GPU results.
These results further demonstrate AoP-SAM’s reliability on
edge devices, achieving lower inference latency and reduced
peak memory usage, making AoP-SAM well-suited for de-
ployment in resource-constrained environments.

Conclusion

We propose AoP-SAM, a novel approach designed to effi-
ciently generate essential prompts for accurate mask gener-
ation in SAM. Our method introduces a lightweight prompt
predictor, which is trained to predict optimal prompt lo-
cations, complemented by a test-time adaptive sampling
and filtering technique that automatically produces these
prompts for SAM. We evaluate the accuracy and efficiency
of AoP-SAM on three segmentation datasets with three
SAM family models. The results demonstrate that AoP-
SAM enhances both the accuracy and efficiency of SAM in



generalized image segmentation tasks, making it ideal for
automated prompt-based segmentation tasks with SAM.
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