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TL; DR. We propose AoP-SAM, a novel approach automatically 
generate essential prompts for accurate segmentation, eliminating the 
need for manual prompt provision.
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Automating SAM's prompt provision eliminates manual input needs, 
enhancing mask segmentation efficiency. However, existing approaches 
face limitations:
      Grid-based prompts lead to excessive mask refinements;
      Extra object detection models create computational overhead;
      Both result in increased latency and reduced efficiency.

We addresses these challenges by efficiently generating essential 
prompts for accurate mask generation without human intervention:
      Orange labels (stars/boxes): Valid prompts;
      Green labels: Invalid prompts;
      Black stars: Filtered prompts processed by AoP-SAM.

Prompt Predictor Utilizes a dual-encoder architecture (CNN + ViT) 
to process both original image and SAM's embeddings. Processes 
inputs through CNN layers with ReLU activation and generates a 
Prompt Confidence Map (PCM) using sigmoid activation, 
highlighting optimal regions for prompt placement.
ASF Coarse Processing Applies Gaussian filtering to the PCM to 
reduce noise and identify local maxima. These maxima serve as 
initial prompt candidates and are mapped back to original image 
coordinates for precise placement of potential prompts.

ASF Fine Filtering Creates a Prompt Elimination Map (PEM) 
using cosine similarity between image features and reference masks. 
Applies adaptive threshold to remove redundant prompts, ensuring 
only essential ones remain for final mask generation.

Training Leverages SA-1B dataset with over 1B masks and prompts. 
Uses point prompts as ground truth with MSELoss and Adam 
optimization over 1000 epochs. This approach maintains SAM's robust 
generalization capabilities while adding efficient prompt generation.

Performance Hightlights
      Achieves highest mIoU scores across all datasets and encoders, 
outperforming methods using bounding box prompts.
      Demonstrates excellent computational efficiency with fast 
inference (0.122s latency) and low memory usage (6.6MB peak).
      Surpasses both baseline methods (AMG-S, AMG-D) and 
advanced approaches (OAS), achieving better balance between 
segmentation accuracy and prompt generation efficiency.
      Successfully maintains high performance while keeping resource 
usage within practical limits, suitable for real-world applications.

Parameter Analysis
      Sampling Smoothing Factor impacts the coverage area of 
Gaussian filtering - larger factors provide stronger smoothing and 
reduce memory usage during processing.
      Confidence Intensity Threshold and Prompt Spacing Factor 
optimize point prompt generation from confidence maps, ensuring 
accurate and reliable point selection for critical areas.
      Prompt Elimination Threshold controls the balance between 
efficiency and accuracy - lower thresholds increase prompt removal 
ratio for faster mask generation with minimal accuracy trade-off.

Image Encoders Automating Prompts Methods SA-1B COCO LVIS

mIoU → InfLat. ↑ PeakMem. ↑ #P mIoU → InfLat. ↑ PeakMem. ↑ #P mIoU → InfLat. ↑ PeakMem. ↑ #P

MobileSAM

AMG S (Kirillov et al. 2023) 29.8 - 4.5 38.6 56.0 - 1.9 33.5 56.2 - 1.9 33.4
AMG D (Kirillov et al. 2023) 46.9 - 9.1 71.0 60.9 - 1.9 55.9 61.1 - 1.9 55.5
OAS(Box) (Zhang et al. 2023c) 50.7 0.191 7.3 100 55.5 0.187 4.2 44 55.7 0.188 4.0 38
OAS(Central Point) (Zhang et al. 2023c) 48.7 0.188 7.7 141.0 53.9 0.167 4.3 69.0 54.5 0.164 4.3 68.1
AoP-SAM 51.4 0.101 4.1 71.7 61.5 0.096 2.1 58.1 62.3 0.094 2.1 57.5

ViT L

AMG S (Kirillov et al. 2023) 40.0 - 5.7 55.5 61.4 - 4.4 48.8 63.2 - 4.3 49.5
AMG D (Kirillov et al. 2023) 65.6 - 10.3 108.9 67.7 - 4.3 86.0 69.2 - 4.3 86.5
OAS(Box) (Zhang et al. 2023c) 65.8 0.150 9.1 100 63.3 0.152 5.4 44 62.9 0.151 5.3 38
OAS(Central Point) (Zhang et al. 2023c) 67.6 0.149 9.7 199.3 64.2 0.133 5.5 98.4 63.5 0.132 5.5 98.9
AoP-SAM 71.1 0.120 5.4 118.3 68.4 0.116 4.4 97.0 69.8 0.117 4.4 97.2

ViT H

AMG S (Kirillov et al. 2023) 40.8 - 7.1 56.3 63.3 - 5.7 49.8 64.9 - 5.6 50.5
AMG D (Kirillov et al. 2023) 66.8 - 11.8 109.6 69.5 - 5.7 87.4 71.0 - 5.6 88.0
OAS(Box) (Zhang et al. 2023c) 66.9 0.160 10.4 100 64.1 0.152 6.8 44 63.3 0.153 6.6 38
OAS(Central Point) (Zhang et al. 2023c) 68.3 0.154 11.1 207.6 65.1 0.134 6.9 102.1 63.0 0.134 6.8 102.4
AoP-SAM 70.6 0.122 6.6 107.8 70.1 0.120 5.5 90.0 71.9 0.122 5.5 89.7

Table 1: Results on Image Segmentation with bounding box supervision and point supervision. Best are in bold.

Method’s variant SA-1B COCO LVIS

Prompt Predictor Adaptive Sampling Adaptive Filtering mIoU → InfLat. ↑ PeakMem. ↑ #P mIoU → InfLat. ↑ PeakMem. ↑ #P mIoU → InfLat. ↑ PeakMem. ↑ #P

↭ 57.2 0.059 7.2 106.4 67.9 0.078 5.7 70.4 60.9 0.075 5.7 60.6
↭ ↭ 72.8 0.130 10.1 120.1 70.5 0.122 5.7 97.9 71.7 0.121 5.7 97.5
↭ ↭ ↭ 71.3 0.122 6.6 107.8 70.1 0.112 5.7 91.1 71.9 0.122 5.7 89.7

Table 2: Ablation study of variants with our AoP-SAM on image segmentation.

Experiments

To evaluate AoP-SAM across various scenarios, we selected
three different image encoders and implemented five au-
tomating prompts methods. This approach allows us to com-
prehensively assess both the accuracy and efficiency of our
method under different conditions.

Setup

Datasets. Generalized image segmentation focuses on seg-
menting every meaningful entity in an image. In this study,
we use three key datasets: SA-1B, COCO, and LVIS. The
SA-1B dataset, used for training SAM, contains over 1 mil-
lion images and 1 billion masks (Kirillov et al. 2023). The
COCO dataset includes 41,000 images and 200,000 masks,
covering a wide range of common objects (Lin et al. 2014).
LVIS, designed for long-tail distributions, provides 5,000
images and 25,000 masks, emphasizing fine-grained cate-
gories (Gupta, Dollar, and Girshick 2019). These datasets
allow us to thoroughly evaluate the effectiveness of our Au-
tomating Prompts method across diverse and challenging
scenarios.

Baseline. In our comparison of current methods for Au-
tomating Prompts in SAM, we introduce and evaluate two
types of prompts: bounding box prompts and point prompts.
The methods AMG S and AMG D represent the vanilla grid
search with 16↓ 16 and 32↓ 32 prompts, respectively, as
utilized in SAM (Kirillov et al. 2023). We also examine
the Object-Aware Sampling (OAS) method, which employs
YOLOv8 to generate bounding box prompts (Zhang et al.
2023c). Furthermore, we implement an additional method
that uses the central point of the bounding box generated by
OAS as point prompts. Note that AoP-SAM is trained on
a subset dataset of SA 1B and tested on a separate test set,

similarly all the comparative methods we employ are also
trained and tested on different sets.

Evaluating SAM’s accuracy is challenging as it generates
masks without predefined labels, making traditional metrics
like mIoU (Shotton et al. 2006; Han et al. 2023), mAP (Lin
et al. 2014; Henderson and Ferrari 2017), and PQ(Kirillov
et al. 2019) unsuitable (Zhang et al. 2023d). To address this,
we use the greedy IoU algorithm (Zhang et al. 2023d), which
matches each SAM mask with the closest ground truth mask
based on IoU and calculates the mean IoU (mIoU) for all
matches. In addition to evaluating accuracy performance,
we also assess the efficiency of Methods of Automating
Prompts in time- or resource-constrained environments us-
ing Inference Latency (InfLat.)(s) for producing prompts and
peak memory (PeakMem.)(GB) consumption during mask
generation as key metrics. Additionally, we count the num-
ber of essential prompts (#P) as a reference point for com-
paring methods. It is important to note that a higher value
of mIoU, or lower values of InfLat. and PeakMem., indicate
higher efficiency. Although there is no clear preference for
the number of essential prompts, intuitively, a smaller num-
ber of prompts yielding high accuracy performance is con-
sidered advantageous.

Implementation Details. Following the previous prompt-
ing settings (Kirillov et al. 2023), we enable the option for
generating multiple mask outputs from a single prompt for
point prompts, while disabling it for box prompts (Zhang
et al. 2023c). No background prompts are provided in ei-
ther case. We also implemented quality checks for all meth-
ods, removing low-quality masks (e.g., those with low con-
fidence or stability scores) during performance evaluation.

For coarsely sampling point prompts from the Prompt
Confidence Map, we first apply a Smoothing Factor=2, a
Confidence Intensity Threshold=0.2, and a Prompt Spacing

(a) Sampling Smoothing Factor
Factor mIoU → InfLat. ↑ PeakMem. ↑

1 72.4 0.124 51.5
2 70.4 0.122 42.2
3 67.3 0.118 32.7
4 63.4 0.122 24.6

(b) Confidence Intensity Threshold
Thr. mIoU → InfLat. ↑ PeakMem. ↑
0.1 70.9 0.121 10.1
0.2 70.4 0.122 9.75
0.3 68.7 0.116 9.52

0.4 66.4 0.117 9.60

(c) Prompt Spacing Factor
Factor mIoU → InfLat. ↑ PeakMem. ↑

4 72.7 0.123 10.0
5 71.6 0.123 9.88
6 70.4 0.122 9.75

7 68.9 0.117 9.82

(d) Prompt Elimination Threshold
Thr. mIoU → MaskLat. ↑ Ratioelim. →
1.25 68.4 0.671 51.5

1.3 70.4 0.799 42.3
1.35 71.6 0.93 32.7
1.4 72.2 1.04 24.6

Table 3: Ablation study on Hyper-parameters employed in AoP-SAM. Best are in bold

Factor=2 as initialized parameters. In each iteration, the out-
put mask from the previous iteration serves as a reference to
generate a Prompt Elimination Map via the ASF, adaptively
filtering out selected prompt candidates during test-time to
prevent redundant mask generation in future iterations. The
experiments are conducted using the PyTorch framework on
a single Nvidia Titan RTX GPU.

Experiment Results and Analysis

Experiment Results. Table 1 compares the performance of
various Automating Prompt methods across different image
encoders and evaluated on three datasets. Across all datasets
and image encoders, AoP-SAM consistently achieves the
highest mIoU scores, even though bounding box methods in-
herently benefit from more spatial information. This under-
scores the effectiveness of AoP-SAM in leveraging prompts
for accurate segmentation, surpassing both traditional meth-
ods and those that rely on advanced object detection mod-
els. The AoP-SAM method not only improves accuracy but
also demonstrates competitive latency and memory usage.
For example, on the SA-1B dataset with the ViT H encoder,
AoP-SAM achieves a latency of 0.122s and peak mem-
ory usage of 6.6GB, which are within acceptable ranges
while delivering superior segmentation performance. Over-
all, the OAS methods (using either box or central point
prompts) generally perform better than the baseline AMG S
and AMG D methods but fall short of AoP-SAM. This in-
dicates that while object-aware sampling improves prompt
effectiveness, the adaptive sampling and filtering techniques
employed in AoP-SAM further enhance the accuracy of seg-
mentation and efficiency of Automating Prompts.

Component Analysis. We further analyze the impact of
components including the Prompt Predictor, Adaptive Sam-
pling, and Adaptive Filtering in Table 2 on the same datasets.
When Adaptive Sampling is enabled, there is a notable im-
provement in mIoU compared to using only the Prompt
Predictor. However, the best performance is observed when
both Adaptive Sampling and Adaptive Filtering are used to-
gether, highlighting the importance of filtering redundant
prompts to enhance segmentation accuracy. The study shows
that while the full AoP-SAM configuration achieves the
highest mIoU, it slightly increases latency and memory us-
age, a key trade-off for speed-sensitive applications.

Sampling Smoothing Factor. In Table 3a, we apply
Gaussian filtering to the heatmap using the Sampling
Smoothing Factor. A larger Sampling Smoothing Factor al-
lows the model to cover a broader area, providing more sub-
stantial smoothing, which is useful for reducing memory ac-
cess during preparation and processing.

From heatmap to point prompt. In Table 3b-3c, we ex-

Prompt Methods
Latency (Sec) ↑ Latency (Sec) ↑ Latency (Sec) ↑ Peak Mem ↑

(SA-1B) (COCO) (LVIS) (GB)

OAS(Box) 1.16 1.01 0.99 0.78
OAS(Central) 1.32 1.21 1.23 0.78
AoP-SAM 0.65 0.77 0.84 0.042

Table 4: Experimental results with MobileSAM for prompt
automation efficiency on an Nvidia Jetson Orin Nano Edge
GPU.

plore various parameter settings to transform the confidence
map into optimized point prompts. By adjusting the Confi-
dence Intensity Threshold and Prompt Spacing Factor, we
aim to identify the optimal points that most accurately rep-
resent the critical areas in the confidence map. These ad-
justments help refine the sensitivity of the point selection
process, ensuring that the resulting point prompts are both
precise and reliable.

Prompt Elimination Threshold. We evaluate the impact
of the Prompt Elimination Threshold on the prompt removal
ratio in Table 3d. As the Prompt Elimination Threshold de-
creases, the prompt removal ratio increases, resulting in a
speed-up effect of the mask generation while may slightly
affect accuracy.

Edge Device. We conducted the prompt automation ex-
periment on an Nvidia Jetson Orin Nano Edge GPU, ob-
taining the results in Table 4. Due to hardware limitations,
only MobileSAM (Zhang et al. 2023b) could run, as other
pre-trained models exhausted the edge GPU memory. We
focused on evaluating the efficiency of prompt automation,
with accuracy expected to align with standard GPU results.
These results further demonstrate AoP-SAM’s reliability on
edge devices, achieving lower inference latency and reduced
peak memory usage, making AoP-SAM well-suited for de-
ployment in resource-constrained environments.

Conclusion

We propose AoP-SAM, a novel approach designed to effi-
ciently generate essential prompts for accurate mask gener-
ation in SAM. Our method introduces a lightweight prompt
predictor, which is trained to predict optimal prompt lo-
cations, complemented by a test-time adaptive sampling
and filtering technique that automatically produces these
prompts for SAM. We evaluate the accuracy and efficiency
of AoP-SAM on three segmentation datasets with three
SAM family models. The results demonstrate that AoP-
SAM enhances both the accuracy and efficiency of SAM in
generalized image segmentation tasks, making it ideal for
automated prompt-based segmentation tasks with SAM.

(a) Sampling Smoothing Factor
Factor mIoU → InfLat. ↑ PeakMem. ↑

1 72.4 0.124 51.5
2 70.4 0.122 42.2
3 67.3 0.118 32.7
4 63.4 0.122 24.6

(b) Confidence Intensity Threshold
Thr. mIoU → InfLat. ↑ PeakMem. ↑
0.1 70.9 0.121 10.1
0.2 70.4 0.122 9.75
0.3 68.7 0.116 9.52
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(c) Prompt Spacing Factor
Factor mIoU → InfLat. ↑ PeakMem. ↑

4 72.7 0.123 10.0
5 71.6 0.123 9.88
6 70.4 0.122 9.75

7 68.9 0.117 9.82

(d) Prompt Elimination Threshold
Thr. mIoU → MaskLat. ↑ Ratioelim. →
1.25 68.4 0.671 51.5

1.3 70.4 0.799 42.3
1.35 71.6 0.93 32.7
1.4 72.2 1.04 24.6

Table 3: Ablation study on Hyper-parameters employed in AoP-SAM. Best are in bold

Factor=2 as initialized parameters. In each iteration, the out-
put mask from the previous iteration serves as a reference to
generate a Prompt Elimination Map via the ASF, adaptively
filtering out selected prompt candidates during test-time to
prevent redundant mask generation in future iterations. The
experiments are conducted using the PyTorch framework on
a single Nvidia Titan RTX GPU.

Experiment Results and Analysis

Experiment Results. Table 1 compares the performance of
various Automating Prompt methods across different image
encoders and evaluated on three datasets. Across all datasets
and image encoders, AoP-SAM consistently achieves the
highest mIoU scores, even though bounding box methods in-
herently benefit from more spatial information. This under-
scores the effectiveness of AoP-SAM in leveraging prompts
for accurate segmentation, surpassing both traditional meth-
ods and those that rely on advanced object detection mod-
els. The AoP-SAM method not only improves accuracy but
also demonstrates competitive latency and memory usage.
For example, on the SA-1B dataset with the ViT H encoder,
AoP-SAM achieves a latency of 0.122s and peak mem-
ory usage of 6.6GB, which are within acceptable ranges
while delivering superior segmentation performance. Over-
all, the OAS methods (using either box or central point
prompts) generally perform better than the baseline AMG S
and AMG D methods but fall short of AoP-SAM. This in-
dicates that while object-aware sampling improves prompt
effectiveness, the adaptive sampling and filtering techniques
employed in AoP-SAM further enhance the accuracy of seg-
mentation and efficiency of Automating Prompts.

Component Analysis. We further analyze the impact of
components including the Prompt Predictor, Adaptive Sam-
pling, and Adaptive Filtering in Table 2 on the same datasets.
When Adaptive Sampling is enabled, there is a notable im-
provement in mIoU compared to using only the Prompt
Predictor. However, the best performance is observed when
both Adaptive Sampling and Adaptive Filtering are used to-
gether, highlighting the importance of filtering redundant
prompts to enhance segmentation accuracy. The study shows
that while the full AoP-SAM configuration achieves the
highest mIoU, it slightly increases latency and memory us-
age, a key trade-off for speed-sensitive applications.

Sampling Smoothing Factor. In Table 3a, we apply
Gaussian filtering to the heatmap using the Sampling
Smoothing Factor. A larger Sampling Smoothing Factor al-
lows the model to cover a broader area, providing more sub-
stantial smoothing, which is useful for reducing memory ac-
cess during preparation and processing.

From heatmap to point prompt. In Table 3b-3c, we ex-

Prompt Methods
Latency (Sec) ↑ Latency (Sec) ↑ Latency (Sec) ↑ Peak Mem ↑

(SA-1B) (COCO) (LVIS) (GB)

OAS(Box) 1.16 1.01 0.99 0.78
OAS(Central) 1.32 1.21 1.23 0.78
AoP-SAM 0.65 0.77 0.84 0.042

Table 4: Experimental results with MobileSAM for prompt
automation efficiency on an Nvidia Jetson Orin Nano Edge
GPU.

plore various parameter settings to transform the confidence
map into optimized point prompts. By adjusting the Confi-
dence Intensity Threshold and Prompt Spacing Factor, we
aim to identify the optimal points that most accurately rep-
resent the critical areas in the confidence map. These ad-
justments help refine the sensitivity of the point selection
process, ensuring that the resulting point prompts are both
precise and reliable.

Prompt Elimination Threshold. We evaluate the impact
of the Prompt Elimination Threshold on the prompt removal
ratio in Table 3d. As the Prompt Elimination Threshold de-
creases, the prompt removal ratio increases, resulting in a
speed-up effect of the mask generation while may slightly
affect accuracy.

Edge Device. We conducted the prompt automation ex-
periment on an Nvidia Jetson Orin Nano Edge GPU, ob-
taining the results in Table 4. Due to hardware limitations,
only MobileSAM (Zhang et al. 2023b) could run, as other
pre-trained models exhausted the edge GPU memory. We
focused on evaluating the efficiency of prompt automation,
with accuracy expected to align with standard GPU results.
These results further demonstrate AoP-SAM’s reliability on
edge devices, achieving lower inference latency and reduced
peak memory usage, making AoP-SAM well-suited for de-
ployment in resource-constrained environments.

Conclusion

We propose AoP-SAM, a novel approach designed to effi-
ciently generate essential prompts for accurate mask gener-
ation in SAM. Our method introduces a lightweight prompt
predictor, which is trained to predict optimal prompt lo-
cations, complemented by a test-time adaptive sampling
and filtering technique that automatically produces these
prompts for SAM. We evaluate the accuracy and efficiency
of AoP-SAM on three segmentation datasets with three
SAM family models. The results demonstrate that AoP-
SAM enhances both the accuracy and efficiency of SAM in
generalized image segmentation tasks, making it ideal for
automated prompt-based segmentation tasks with SAM.

Image Encoders Auto Prompts Methods SA-1B COCO LVIS

mIoU → InfLat. ↑ PeakMem. ↑ #P mIoU → InfLat. ↑ PeakMem. ↑ #P mIoU → InfLat. ↑ PeakMem. ↑ #P

MobileSAM

AMG S 29.8 - 4.5 38.6 56.0 - 1.9 33.5 56.2 - 1.9 33.4
AMG D 46.9 - 9.1 71.0 60.9 - 1.9 55.9 61.1 - 1.9 55.5
OAS(Box) 50.7 0.191 7.3 100 55.5 0.187 4.2 44 55.7 0.188 4.0 38
OAS(Central Point) 48.7 0.188 7.7 141.0 53.9 0.167 4.3 69.0 54.5 0.164 4.3 68.1
AoP-SAM 51.4 0.101 4.1 71.7 61.5 0.096 2.1 58.1 62.3 0.094 2.1 57.5

ViT L

AMG S 40.0 - 5.7 55.5 61.4 - 4.4 48.8 63.2 - 4.3 49.5
AMG D 65.6 - 10.3 108.9 67.7 - 4.3 86.0 69.2 - 4.3 86.5
OAS(Box) 65.8 0.150 9.1 100 63.3 0.152 5.4 44 62.9 0.151 5.3 38
OAS(Central Point) 67.6 0.149 9.7 199.3 64.2 0.133 5.5 98.4 63.5 0.132 5.5 98.9
AoP-SAM 71.1 0.120 5.4 118.3 68.4 0.116 4.4 97.0 69.8 0.117 4.4 97.2

ViT H

AMG S 40.8 - 7.1 56.3 63.3 - 5.7 49.8 64.9 - 5.6 50.5
AMG D 66.8 - 11.8 109.6 69.5 - 5.7 87.4 71.0 - 5.6 88.0
OAS(Box) 66.9 0.160 10.4 100 64.1 0.152 6.8 44 63.3 0.153 6.6 38
OAS(Central Point) 68.3 0.154 11.1 207.6 65.1 0.134 6.9 102.1 63.0 0.134 6.8 102.4
AoP-SAM 70.6 0.122 6.6 107.8 70.1 0.120 5.5 90.0 71.9 0.122 5.5 89.7

Table 1: Results on Image Segmentation with bounding box supervision and point supervision. Best are in bold.

Method’s variant SA-1B COCO LVIS

Prompt Predictor Adaptive Sampling Adaptive Filtering mIoU → InfLat. ↑ PeakMem. ↑ #P mIoU → InfLat. ↑ PeakMem. ↑ #P mIoU → InfLat. ↑ PeakMem. ↑ #P

↭ 57.2 0.059 7.2 106.4 67.9 0.078 5.7 70.4 60.9 0.075 5.7 60.6
↭ ↭ 72.8 0.130 10.1 120.1 70.5 0.122 5.7 97.9 71.7 0.121 5.7 97.5
↭ ↭ ↭ 71.3 0.122 6.6 107.8 70.1 0.112 5.7 91.1 71.9 0.122 5.7 89.7

Table 2: Ablation study of variants with our AoP-SAM on image segmentation.

Experiments

To evaluate AoP-SAM across various scenarios, we selected
three different image encoders and implemented five au-
tomating prompts methods. This approach allows us to com-
prehensively assess both the accuracy and efficiency of our
method under different conditions.

Setup

Datasets. Generalized image segmentation focuses on seg-
menting every meaningful entity in an image. In this study,
we use three key datasets: SA-1B, COCO, and LVIS. The
SA-1B dataset, used for training SAM, contains over 1 mil-
lion images and 1 billion masks (Kirillov et al. 2023). The
COCO dataset includes 41,000 images and 200,000 masks,
covering a wide range of common objects (Lin et al. 2014).
LVIS, designed for long-tail distributions, provides 5,000
images and 25,000 masks, emphasizing fine-grained cate-
gories (Gupta, Dollar, and Girshick 2019). These datasets
allow us to thoroughly evaluate the effectiveness of our Au-
tomating Prompts method across diverse and challenging
scenarios.

Baseline. In our comparison of current methods for Au-
tomating Prompts in SAM, we introduce and evaluate two
types of prompts: bounding box prompts and point prompts.
The methods AMG S and AMG D represent the vanilla grid
search with 16↓ 16 and 32↓ 32 prompts, respectively, as
utilized in SAM (Kirillov et al. 2023). We also examine
the Object-Aware Sampling (OAS) method, which employs
YOLOv8 to generate bounding box prompts (Zhang et al.
2023c). Furthermore, we implement an additional method
that uses the central point of the bounding box generated by
OAS as point prompts. Note that AoP-SAM is trained on

a subset dataset of SA 1B and tested on a separate test set,
similarly all the comparative methods we employ are also
trained and tested on different sets.

Evaluating SAM’s accuracy is challenging as it generates
masks without predefined labels, making traditional metrics
like mIoU (Shotton et al. 2006; Han et al. 2023), mAP (Lin
et al. 2014; Henderson and Ferrari 2017), and PQ(Kirillov
et al. 2019) unsuitable (Zhang et al. 2023d). To address this,
we use the greedy IoU algorithm (Zhang et al. 2023d), which
matches each SAM mask with the closest ground truth mask
based on IoU and calculates the mean IoU (mIoU) for all
matches. In addition to evaluating accuracy performance,
we also assess the efficiency of Methods of Automating
Prompts in time- or resource-constrained environments us-
ing Inference Latency (InfLat.)(s) for producing prompts and
peak memory (PeakMem.)(GB) consumption during mask
generation as key metrics. Additionally, we count the num-
ber of essential prompts (#P) as a reference point for com-
paring methods. It is important to note that a higher value
of mIoU, or lower values of InfLat. and PeakMem., indicate
higher efficiency. Although there is no clear preference for
the number of essential prompts, intuitively, a smaller num-
ber of prompts yielding high accuracy performance is con-
sidered advantageous.

Implementation Details. Following the previous prompt-
ing settings (Kirillov et al. 2023), we enable the option for
generating multiple mask outputs from a single prompt for
point prompts, while disabling it for box prompts (Zhang
et al. 2023c). No background prompts are provided in ei-
ther case. We also implemented quality checks for all meth-
ods, removing low-quality masks (e.g., those with low con-
fidence or stability scores) during performance evaluation.

For coarsely sampling point prompts from the Prompt

Experiment on 
Nvidia Jetson Orin 
Nano Edge GPU

SAM (Segment Anything Model) is an image segmentation 
framework with three core components: an Image Encoder, 
Prompt Encoder, and Mask Decoder, which work together to 
generate precise segmentation masks from images and 
interactive inputs. Trained on over 1 billion masks, SAM 
achieves remarkable zero-shot generalization capabilities while 
optimizing efficiency by computing embeddings only once.

             : Mean Intersection over Union. Accuracy by matching 
masks with ground truth masks using greedy algorithm;
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mIoU

<latexit sha1_base64="TmIDa7/eCQLF6nqgfNneWV8WgN4=">AAACAXicbZDLSsNAFIYnXmu9Rd0IboJFcBUS8bYsuFF0UcFeoA1hMp20QyeTMHMilhA3voobF4q49S3c+TZO2yy09YeBj/+cw5nzBwlnChzn25ibX1hcWi6tlFfX1jc2za3thopTSWidxDyWrQArypmgdWDAaSuRFEcBp81gcDGqN++pVCwWdzBMqBfhnmAhIxi05Zu7HaAPkF2JMPezCd9gsPPcNyuO7YxlzYJbQAUVqvnmV6cbkzSiAgjHSrVdJwEvwxIY4TQvd1JFE0wGuEfbGgWOqPKy8QW5daCdrhXGUj8B1tj9PZHhSKlhFOjOCENfTddG5n+1dgrhuZcxkaRABZksClNuQWyN4rC6TFICfKgBE8n0Xy3SxxIT0KGVdQju9Mmz0Diy3VP75Pa4Ur0u4iihPbSPDpGLzlAVXaIaqiOCHtEzekVvxpPxYrwbH5PWOaOY2UF/ZHz+AI1Ul6M=</latexit>

InfLat.
<latexit sha1_base64="qOPLKWZsiHiAAU17TOv7pKGZnZk=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyyCq5KIr2XBjSBCBfuAtpTJ9LYdOpmEmRuxhODGX3HjQhG3foU7/8Zpm4W2Hrhw5px7mXuPHwmu0XW/rdzC4tLySn61sLa+sbllb+/UdBgrBlUWilA1fKpBcAlV5CigESmggS+g7g8vx379HpTmobzDUQTtgPYl73FG0Ugde6+F8IBJBegw7STTxw0EpTTt2EW35E7gzBMvI0WSodKxv1rdkMUBSGSCat303AjbCVXImYC00Io1RJQNaR+ahkoagG4nkxNS59AoXacXKlMSnYn6eyKhgdajwDedAcWBnvXG4n9eM8beRTvhMooRJJt+1IuFg6EzzsPpcgUMxcgQyhQ3uzpsQBVlaFIrmBC82ZPnSe245J2VTm9PiuXrLI482ScH5Ih45JyUyRWpkCph5JE8k1fyZj1ZL9a79TFtzVnZzC75A+vzB1CvmA8=</latexit>

PeakMem.

<latexit sha1_base64="dnihUqPw4vSiXHZzc73EZhcWnnM=">AAAB6nicbVDLSsNAFL2pr1pfVZduBoPgqiTia1lwI7ipaB/QBplMb9qhk0mYmQgl9BPcuFDErV/kzr9x2mah1QMDh3POZe49YSq4Np735ZSWlldW18rrlY3Nre2d6u5eSyeZYthkiUhUJ6QaBZfYNNwI7KQKaRwKbIejq6nffkSleSLvzTjFIKYDySPOqLHSXc9tPFRdr+bNQP4SvyAuFLD5z14/YVmM0jBBte76XmqCnCrDmcBJpZdpTCkb0QF2LZU0Rh3ks1Un5MgqfRIlyj5pyEz9OZHTWOtxHNpkTM1QL3pT8T+vm5noMsi5TDODks0/ijJBTEKmd5M+V8iMGFtCmeJ2V8KGVFFmbDsVW4K/ePJf0jqp+ee1s9tTt35T1FGGAziEY/DhAupwDQ1oAoMBPMELvDrCeXbenPd5tOQUM/vwC87HN7q+jXo=</latexit>

#P

             (s): Inference Latency. Time taken to produce prompts;

                 (GB): Peak Memory. Measures maximum memory 
consumption during mask generation;
         : Number of Essential Prompts - counts prompts needed 
(smaller number preferred if accuracy remains high).

Measurement Matrix

Experiments


